9398
Comment:
|
14178
Removed quoted symbols from TDL syntax; added some typedef layout description
|
Deletions are marked like this. | Additions are marked like this. |
Line 2: | Line 2: |
Line 4: | Line 5: |
== Case Sensitivity == === Case Sensitive === |
<<TableOfContents(3)>> == TDL File Syntax == Productions are separated into thematic sections. ALL-CAPS rule names are for non-content terminals, which appear at the bottom of the description. {{{#!highlight ruby # File Contents TdlTypeFile := ( TypeDef | TypeAddendum | Spacing )* EOF TdlRuleFile := ( LexRuleDef | LetterSet | WildCard | Spacing )* EOF # Types and Lexical Rules TypeDef := TypeName DEFOP TypeDefBody DOT TypeAddendum := TypeName ADDOP AddendumBody DOT TypeName := Identifier Spacing LexRuleDef := LexRuleId DEFOP Affix? TypeDefBody DOT LexRuleId := Identifier Spacing # Identifiers are used in several patterns # # Note: For some processors, like the LKB, there may be "break characters" # defined which determine what is allowed within an identifier. Identifier := /[^\s.:<=&,#[]$()>!^\/]+/ # Definition Bodies (top-level conjunctions of terms) # # Note: Definition bodies are most simply Conjunctions, but several # variations require special productions: # # (1) """DocStrings""" may precede any top-level Term or the final DOT # (2) TypeDef and LexRuleDef require at least one TypeName # (3) TypeAddendum may use a DocString in place of a Conjunction # TypeDefBody := TypedConj DocString? AddendumBody := DocConj DocString? | DocString # Note: To accommodate TypeDefBody and AddendumBody, three special # conjunctions are added: # # (1) TypedConj has an obligatory TypeName term # (2) FeatureConj excludes type terms (including strings, etc.) # (3) DocConj is a regular conjunction with optional DocStrings # # Note that FeatureConj is only necessary to reduce ambiguity (e.g., # for LALR parsing); if ambiguity is allowed, DocConj may be used. TypedConj := ( FeatureConj AND )? DocString? TypeName ( AND DocConj )? FeatureConj := DocString? FeatureTerm ( AND DocString? FeatureTerm )* DocConj := DocString? Term ( AND DocString? Term )* # Note: The DocString pattern may span multiple lines DocString := /"""([^"\\]|\\.|"(?!")|""(?!"))*"""/ Spacing # Terms and Conjunctions Conjunction := Term ( AND Term )* Term := TypeTerm | FeatureTerm | Coreference TypeTerm := TypeName | DQString | Regex FeatureTerm := Avm | DiffList | ConsList DQString := /"([^"\\]|\\.)*"/ Spacing Regex := "^" /([^$\\]|\\.)*/ "$" Avm := AVMOPEN AttrVals? AVMCLOSE AttrVals := AttrVal ( COMMA AttrVal )* AttrVal := AttrPath SPACE Conjunction AttrPath := Attribute ( DOT Attribute )* Attribute := Identifier Spacing DiffList := DLOPEN Conjunctions? DLCLOSE ConsList := CLOPEN ( Conjunctions ConsEnd? )? CLCLOSE ConsEnd := COMMA ELLIPSIS | DOT Conjunction Conjunctions := Conjunction ( COMMA Conjunction )* Coreference := "#" Identifier Spacing # Letter-sets, Wild-cards, and Affixes # # Note: spacing is sensitive within these patterns, so many non-content # terminals are used directly with an explicit SPACE instead of in # a production with Spacing. LetterSet := "%(letter-set" SPACE? LetterSetDef SPACE? ")" WildCard := "%(wild-card" SPACE? WildCardDef SPACE? ")" LetterSetDef := "(" LetterSetVar SPACE Characters ")" WildCardDef := "(" WildCardVar SPACE Characters ")" LetterSetVar := /![^ ]/ WildCardVar := /\?[^ ]/ Characters := /([^)\\]|\\.)+/ # Note: When a LetterSetVar is used in an AffixMatch, the same LetterSetVar # in the AffixSub copies the matched character, in order, so there # should be the same number of LetterSetVars in both, but this is not # captured in the syntax. Affix := AffixClass AffixPattern+ Spacing AffixClass := "%prefix" | "%suffix" AffixPattern := SPACE? "(" AffixMatch SPACE AffixSub ")" AffixMatch := NullChar | CharList AffixSub := CharList NullChar := "*" CharList := ( LetterSetVar | WildCardVar | AffixChar )+ AffixChar := /([^!?\s*\\]|\\[^ ])+/ # Whitespace and Comments # # Note: SPACE and BlockComment may span multiple lines Spacing := SPACE? Comment* SPACE := /\s+/ Comment := ( LineComment | BlockComment ) SPACE? LineComment := /;.*$/ BlockComment := "#|" /([^|\\]|\\.|\|(?!#))*/ "|#" # Non-content Terminals DEFOP := ":=" Spacing ADDOP := ":+" Spacing DOT := "." Spacing AND := "&" Spacing COMMA := "," Spacing AVMOPEN := "[" Spacing AVMCLOSE := "]" Spacing DLOPEN := "<!" Spacing DLCLOSE := "!>" Spacing CLOPEN := "<" Spacing CLCLOSE := ">" Spacing ELLIPSIS := "..." Spacing EOF := "" # end-of-file }}} == TDL File Interpretation and Conventions == === Layout of a type definition === Some parts of a type definition are mandated by TDL syntax, such as the initial identifier, the main operator, and the final dot: {{{ identifier := (definition body) . }}} The definition body is just a conjunction of terms, maybe with documentation strings, and there is much valid variation in how those terms are arranged. Nevertheless, there are conventional locations for these terms depending on what kind of term they are. For instance, the supertypes are generally listed first, followed by an AVM: {{{ head_only := unary_phrase & headed_phrase & [ HD-DTR #head & [ SYNSEM.LOCAL.CONJ cnil ], ARGS < #head > ]. }}} If a documentation string is specified, the conventional place is before the AVM: {{{ n_-_ad-pl_le := norm_np_adv_lexent & """ <description>N, can modify, locative (place) <ex>B lives overseas. <nex> <todo> """ [ SYNSEM.LOCAL [ CAT.HEAD [ MINORS.MIN place_n_rel, CASE obliq ], CONT.HOOK.INDEX.SORT place ] ]. }}} Or if there is no AVM, before the final dot: {{{ info-str := icons """Type for underspecified or "neutral" information structure.""". }}} === Types versus instances === === Specifying the text encoding === The text encoding of TDL files can be specified using a special comment on the first line of the file, as is done with many scripting languages. For instance, the following sets the encoding to UTF-8: {{{#!highlight scheme ; -*- coding: utf-8 -*- }}} In some TDL files, attributes specific to the [[https://www.gnu.org/software/emacs/|Emacs]] text editor may be included: {{{#!highlight scheme ;;; -*- Mode: tdl; Coding: utf-8; indent-tabs-mode: nil; -*- }}} === Feature interpretation of lists === The `< ... >` and `<! ... !>` shorthand for lists ("cons lists") and diff-lists, respectively, correspond to normal attribute-value pairs. The implementation relies on an encoding scheme where the first list item (the list's head) is at the feature `FIRST` while the rest of the list (the tail) is defined recursively under the feature `REST` (e.g., `REST.REST.FIRST` is the third element). The types associated with open and closed lists, and sometimes even the feature names, are configurable by the grammar. || '''entity''' || '''example''' || '''LKB config''' || '''ACE config''' || || cons-list type || `*cons*` || (not configurable) || `cons-type` || || open list type || `*list*` || `*list-type*` || `list-type` || || closed list type || `*null*` || `*empty-list-type*` || `null-type` || || diff-list type || `*diff-list*` || `*diff-list-type*` || `diff-list-type` || || list head feature || `FIRST` || `*list-head*` || (not configurable) || || list tail feature || `REST` || `*list-tail*` || (not configurable) || || diff-list list feature || `LIST` || `*diff-list-list*` || (not configurable) || || diff-list last feature || `LAST` || `*diff-list-last*` || (not configurable) || For the examples below, I use the values defined in the above table, which are taken from the ERG. ==== Cons Lists ==== Regular cons lists may be open (extendable) or closed (fixed-length). The type of an open list as interpreted by, e.g., `< ... >`, is `*list*` (rather, the defined open list type), but in hand-written TDL a subtype of `*list*` is often used, such as `*cons*`. {{{#!highlight scheme ; an empty list is terminated (always empty) [ ATTR < > ] => [ ATTR *null* ] ; single item goes on FIRST attribute and REST is terminated [ ATTR < a > ] => [ ATTR *list* & [ FIRST a, REST *null* ] ] ; items after the first go on (REST.)+FIRST [ ATTR < a, b > ] => [ ATTR *list* & [ FIRST a, REST [ FIRST b, REST *null* ] ] ] ; an empty list with ... is not terminated [ ATTR < ... > ] => [ ATTR *list* ] ; this also works with items on the list [ ATTR < a, ... > ] => [ ATTR *list* & [ FIRST a, REST *list* ] ] ; the . delimiter allows a non-*list*, non-*null* value for the last REST [ ATTR < a . #coref > ] => [ ATTR *list* & [ FIRST a, REST #coref ] ] }}} ==== Diff Lists ==== Diff lists are regular lists under a `LIST` attribute, and `LAST` points to the last item. Diff lists don't support the unterminated-list functionality of cons lists, but they allow for appending lists of arbitrary size (see [[GeFaqDiffList]]). {{{#!highlight scheme [ ATTR <! !> ] => [ ATTR *diff-list* & [ LIST #coref, LAST #coref ] ] [ ATTR <! a !> ] => [ ATTR *diff-list* & [ LIST *list* & [ FIRST a, REST #coref ], LAST #coref ] ] }}} === Type documentation === TDL definitions allow documentation strings ("docstrings") before any term in the top-level conjunction or before the terminating dot (`.`) character: {{{ n_-_c_le := n_intr_lex_entry """Intransitive count noun (icn) <ex>The dog barked. <nex>Much dog bark.""". }}} Before docstrings became well-supported, LTDB supported documentation in comments (normally preceding the documented type): {{{#!highlight cl ; <type val="case-p-lex-np-to"> ; <name-ja>承名詞目的格助詞ト ; <description>case-p-lex-np-woを参照。このtypeは助詞「と」。 ; <ex>部長 と 会う ; <nex>ゆっくり と 進む ; <todo> ; </type> case-p-lex-np-to := case-p-lex-np & [SYNSEM.LOCAL.CAT.HEAD.CASE to]. }}} === Case sensitivity === ==== Case Sensitive ==== |
Line 10: | Line 296: |
=== Case Insensitive === | ==== Case Insensitive ==== |
Line 19: | Line 305: |
=== Unknown === | ==== Unknown ==== |
Line 25: | Line 311: |
== Doc Strings == TDL types allow a doc string: {{{ n_-_c_le := n_intr_lex_entry & "Intransitive count noun (icn) <ex>The dog barked. <nex>Much dog bark.". }}} == TDL File Syntax == {{{#!highlight ruby # File Contents TdlTypeFile := ( TypeDef | Spacing )* EOF TdlRuleFile := ( LexRuleDef | MorphSet | Spacing )* EOF # Types and Lexical Rules TypeDef := Type ( AvmDef | AvmAddendum ) Dot AvmDef := DefOp DefBody AvmAddendum := AddOp ( DefBody | DocString? Conjunction | DocString ) LexRuleDef := LexRuleId DefOp Affix? DefBody Dot DefBody := Supertypes ( And DocString? Conjunction | DocString? ) Supertypes := Type ( And Type )* Type := Identifier Spacing LexRuleId := Identifier Spacing DocString := DQString Conjunction := Term ( And Term )* Term := ( Type | FeatureTerm | DiffList | ConsList | Coreference | DQString | QSymbol | Regex ) FeatureTerm := LBrack AttrVals? RBrack AttrVals := AttrVal ( Comma AttrVal )* AttrVal := Attribute ( Dot Attribute )* Conjunction Attribute := Identifier Spacing DiffList := DLOpen Conjunctions? DLClose ConsList := CLOpen ( Conjunctions ConsEnd? )? CLClose ConsEnd := Comma Ellipsis | Dot Conjunction Conjunctions := Conjunction ( Comma Conjunction )* Coreference := "#" Identifier Spacing # Letter-sets, Wild-cards, and Affixes MorphSet := "%" "(" ( LetterSetDef | WildCardDef ) ")" LetterSetDef := "letter-set" Space? "(" LetterSetVar Space LetterSet ")" WildCardDef := "wild-card" Space? "(" WildCardVar Space LetterSet ")" LetterSetVar := /![^ ]/ WildCardVar := /\?[^ ]/ LetterSet := /([^)\\]|\\.)+/ Affix := AffixClass AffixPattern+ Spacing AffixClass := "%prefix" | "%suffix" AffixPattern := Space? "(" ( NullChar | CharList ) Space CharList ")" CharList := ( LetterSetVar | WildCardVar | AffixChar )+ NullChar := "*" AffixChar := /([^!?\s*\\]|\\[^ ])+/ # Whitespace and Comments Spacing := Space? Comment* Space := /\s+/ Comment := ( LineComment | BlockComment ) Space? LineComment := /;.*$/ BlockComment := "#|" /([^|\\]|\\.|\|[^#])*/ "|#" # Literals DefOp := ":=" Spacing AddOp := ":+" Spacing Identifier := /[^\s.:<=&,#[]$()>!^\/]+/ Dot := "." Spacing And := "&" Spacing Comma := "," Spacing LBrack := "[" Spacing RBrack := "]" Spacing DLOpen := "<!" Spacing DLClose := "!>" Spacing CLOpen := "<" Spacing CLClose := ">" Spacing Ellipsis := "..." Spacing DQString := /"([^"\\]|\\.)*"/ Spacing QSymbol := "'" Identifier Spacing Regex := "^" /([^$\\]|\\.)*/ "$" }}} == Docstring Revision == Currently docstrings are regular strings that appear before a Term in an !TypeDef, presumably after the list of supertypes: {{{ type := supertype1 & supertype2 & "Docstring" [ ... ]. }}} But this syntax is not supported in all processors (namely PET), and the others allow variations. At the 2018 summit in Paris (see DiderotSchedule), there was a decision to distinguish docstrings from other strings by using triple-quotes (three double-quotes in a row, similar to Python), which additionally allows quotes to appear inside the docstring. {{{ type := supertype1 & supertype2 & """Docstring""" [ ... ]. }}} This changed the !DocString production like so: {{{#!highlight ruby DocString := /"""([^"\\]|\\.|"[^"]|""[^"])*"""/ Spacing }}} (note that an unescaped quote cannot appear directly before the ending triple-quotes (or rather, it can, but the string would be terminated early and there'd be an extra quote character in the stream)) There are remaining questions about their placement. === Option 1: Placed before any Term with multiple docstrings per type allowed === Where multiple docstrings occur, the type's final docstring is the concatenation of them. Example: {{{ type := """here""" supertype1 & """here""" supertype2 & """here, too""" [ ... ] """maybe here?""". }}} This can be implemented by changing the following producitons: {{{#!highlight ruby TypeDef := Type ( AvmDef | AvmAddendum ) DocString? Dot # maybe LexRuleDef := LexRuleId DefOp Affix? DefBody DocString? Dot # maybe AvmAddendum := AddOp ( DefBody | Conjunction | DocString ) DefBody := Supertypes ( And Conjunction )? Supertypes := DocString? Type ( And DocString? Type )* Term := Docstring? ( Type | FeatureTerm | DiffList | ConsList | Coreference | DQString | QSymbol | Regex ) }}} === Option 2: Placed before any Term with only one docstring per type allowed === Example: {{{ type := supertype1 & """just one, somewhere""" supertype2 & [ ... ]. }}} This is more complicated to describe as production rules (need to duplicate several productions; some for use before docstring is encountered, then others for use after), but the implementation may be simple (just set a flag after reading a docstring). === Option 3: Once, after the list of supertypes and before any feature list === Example: {{{ type := supertype1 & supertype2 & """just one, here""" [ ... ]. type2 := supertype1 & """what about this?""" [ ... ] & supertype2. }}} This is not hard to implement. If it only needs to appear after *a* list of supertypes (both examples above), it's the same as in the full production list above (but other supertypes could appear after a feature list, for instance). If one wants to ensure that all supertypes appear before any docstring or feature list (only the first example above), then we need to duplicate the Conjunction and Term productions to disallow Types at the top level. If that's something desired, it would look like this: {{{#!highlight AvmAddendum := AddOp ( DefBody | DocString? NoTypeConj | DocString ) DefBody := Supertypes DocString? ( And NoTypeConj )? NoTypeConj := NoTypeTerm ( And NoTypeTerm )* NoTypeTerm := ( FeatureTerm | DiffList | ConsList | Coreference | DQString | QSymbol | Regex ) }}} === Option 4: Once, immediately after the typedef or addendum operators === Example: {{{ type := """just one, here""" supertype1 & supertype2 & [ ... ]. type := """ example with multiple lines """ supertype1 & supertype2 & [ ... ]. }}} This is the simplest to implement, and the !DefBody and !Supertypes productions would be unnecessary (unless we still want supertypes to appear first): {{{#!highlight ruby AvmDef := DefOp DocString? Conjunction AvmAddendum := AddOp ( DocString? Conjunction | DocString ) LexRuleDef := LexRuleId DefOp DocString? Affix? Conjunction Dot }}} Previously some did not like it for aesthetic reasons, though (although that is subjective). == Questions == 1. The `^` character is used to signal "expanded-syntax" in the LKB, but is this only used for regular expressions? Are there other expanded syntaxes? Do non-LKB processors support them? |
== Notes for implementation == === DocStrings === Multiple docstrings may be present on a single definition, but only the first one encountered on a definition is considered its primary docstring, and implementers are free to store or discard the other doc strings as they see fit. Docstrings on type-addenda should be concatenated with a newline to the previous docstring(s), or appended to a list of docstrings, associated with the type. === Comments === The syntax description above allows for comments anywhere that separating whitespace is allowed (not including those within strings, regular expressions, letter sets, etc.). This includes within a dotted attribute path (e.g., `[ SYNSEM #| comment |# . #| comment |# LOCAL ... ]`), although grammar developers may want to use this flexibility sparingly. == Open Questions == 1. The `^` character is used to signal "expanded-syntax" in the LKB, but is this only used for regular expressions? Are there other expanded syntaxes? Do non-LKB processors support them? (see [[http://lists.delph-in.net/archives/developers/2009/thread.html#1082|this thread]] on the 'developers' mailing list) |
Line 256: | Line 327: |
3. When supertypes are required (e.g., on a !TypeDef), must they appear before other Terms in the Conjunction? (see [[#Docstring_Revision]] above) 4. Should the (deprecated or repurposed) subtype operator (`:<`) be included in the syntax description? 5. Is variation allowed with regards to the position of docstrings? (see [[#Docstring_Revision]] above) 6. Are spaces allowed inside a feature path? Comments? {{{ type := supertype & [ ATTR1 . ; comment here? ATTR2 value ]; }}} For that matter, are comments allowed anywhere that whitespace is (except maybe letter-sets and lex-rule affix patterns)? |
|
Line 278: | Line 334: |
* [[http://lists.delph-in.net/archives/developers/2006/000419.html|Mailing list discussion about docstrings (Feb 2006)]] * [[http://lists.delph-in.net/archives/developers/2006/000550.html|Mailing list discussion about type addenda (Jul 2006)]] * [[http://lists.delph-in.net/archives/developers/2007/000762.html|Mailing list discussion about docstrings (Mar 2007)]] * [[http://lists.delph-in.net/archives/developers/2007/000868.html|Mailing list discussion about docstrings (Sep 2007)]] * [[http://lists.delph-in.net/archives/developers/2008/001037.html|Mailing list discussion about the :+ and :< operators (Nov 2008)]] * [[http://lists.delph-in.net/archives/developers/2009/001082.html|Mailing list discussion about regular expressions in TDL (Jan 2009)]] * [[http://lists.delph-in.net/archives/developers/2018/002754.html|Mailing list discussion about TDL syntax (Jul 2018)]] * [[http://lists.delph-in.net/archives/developers/2018/002792.html|Mailing list discussion about docstrings (Aug 2018)]] |
Type Description Language and other aspects of DELPH-IN Joint Reference Formalism
Contents
TDL File Syntax
Productions are separated into thematic sections. ALL-CAPS rule names are for non-content terminals, which appear at the bottom of the description.
1 # File Contents
2
3 TdlTypeFile := ( TypeDef | TypeAddendum | Spacing )* EOF
4 TdlRuleFile := ( LexRuleDef | LetterSet | WildCard | Spacing )* EOF
5
6 # Types and Lexical Rules
7
8 TypeDef := TypeName DEFOP TypeDefBody DOT
9 TypeAddendum := TypeName ADDOP AddendumBody DOT
10 TypeName := Identifier Spacing
11
12 LexRuleDef := LexRuleId DEFOP Affix? TypeDefBody DOT
13 LexRuleId := Identifier Spacing
14
15 # Identifiers are used in several patterns
16 #
17 # Note: For some processors, like the LKB, there may be "break characters"
18 # defined which determine what is allowed within an identifier.
19
20 Identifier := /[^\s.:<=&,#[]$()>!^\/]+/
21
22 # Definition Bodies (top-level conjunctions of terms)
23 #
24 # Note: Definition bodies are most simply Conjunctions, but several
25 # variations require special productions:
26 #
27 # (1) """DocStrings""" may precede any top-level Term or the final DOT
28 # (2) TypeDef and LexRuleDef require at least one TypeName
29 # (3) TypeAddendum may use a DocString in place of a Conjunction
30 #
31
32 TypeDefBody := TypedConj DocString?
33 AddendumBody := DocConj DocString? | DocString
34
35 # Note: To accommodate TypeDefBody and AddendumBody, three special
36 # conjunctions are added:
37 #
38 # (1) TypedConj has an obligatory TypeName term
39 # (2) FeatureConj excludes type terms (including strings, etc.)
40 # (3) DocConj is a regular conjunction with optional DocStrings
41 #
42 # Note that FeatureConj is only necessary to reduce ambiguity (e.g.,
43 # for LALR parsing); if ambiguity is allowed, DocConj may be used.
44
45 TypedConj := ( FeatureConj AND )? DocString? TypeName ( AND DocConj )?
46 FeatureConj := DocString? FeatureTerm ( AND DocString? FeatureTerm )*
47 DocConj := DocString? Term ( AND DocString? Term )*
48
49 # Note: The DocString pattern may span multiple lines
50
51 DocString := /"""([^"\\]|\\.|"(?!")|""(?!"))*"""/ Spacing
52
53 # Terms and Conjunctions
54
55 Conjunction := Term ( AND Term )*
56 Term := TypeTerm | FeatureTerm | Coreference
57 TypeTerm := TypeName
58 | DQString
59 | Regex
60 FeatureTerm := Avm
61 | DiffList
62 | ConsList
63
64 DQString := /"([^"\\]|\\.)*"/ Spacing
65 Regex := "^" /([^$\\]|\\.)*/ "$"
66
67 Avm := AVMOPEN AttrVals? AVMCLOSE
68 AttrVals := AttrVal ( COMMA AttrVal )*
69 AttrVal := AttrPath SPACE Conjunction
70 AttrPath := Attribute ( DOT Attribute )*
71 Attribute := Identifier Spacing
72
73 DiffList := DLOPEN Conjunctions? DLCLOSE
74 ConsList := CLOPEN ( Conjunctions ConsEnd? )? CLCLOSE
75 ConsEnd := COMMA ELLIPSIS | DOT Conjunction
76 Conjunctions := Conjunction ( COMMA Conjunction )*
77
78 Coreference := "#" Identifier Spacing
79
80 # Letter-sets, Wild-cards, and Affixes
81 #
82 # Note: spacing is sensitive within these patterns, so many non-content
83 # terminals are used directly with an explicit SPACE instead of in
84 # a production with Spacing.
85
86 LetterSet := "%(letter-set" SPACE? LetterSetDef SPACE? ")"
87 WildCard := "%(wild-card" SPACE? WildCardDef SPACE? ")"
88 LetterSetDef := "(" LetterSetVar SPACE Characters ")"
89 WildCardDef := "(" WildCardVar SPACE Characters ")"
90 LetterSetVar := /![^ ]/
91 WildCardVar := /\?[^ ]/
92 Characters := /([^)\\]|\\.)+/
93
94 # Note: When a LetterSetVar is used in an AffixMatch, the same LetterSetVar
95 # in the AffixSub copies the matched character, in order, so there
96 # should be the same number of LetterSetVars in both, but this is not
97 # captured in the syntax.
98
99 Affix := AffixClass AffixPattern+ Spacing
100 AffixClass := "%prefix" | "%suffix"
101 AffixPattern := SPACE? "(" AffixMatch SPACE AffixSub ")"
102 AffixMatch := NullChar | CharList
103 AffixSub := CharList
104 NullChar := "*"
105 CharList := ( LetterSetVar | WildCardVar | AffixChar )+
106 AffixChar := /([^!?\s*\\]|\\[^ ])+/
107
108 # Whitespace and Comments
109 #
110 # Note: SPACE and BlockComment may span multiple lines
111
112 Spacing := SPACE? Comment*
113 SPACE := /\s+/
114 Comment := ( LineComment | BlockComment ) SPACE?
115 LineComment := /;.*$/
116 BlockComment := "#|" /([^|\\]|\\.|\|(?!#))*/ "|#"
117
118 # Non-content Terminals
119
120 DEFOP := ":=" Spacing
121 ADDOP := ":+" Spacing
122 DOT := "." Spacing
123 AND := "&" Spacing
124 COMMA := "," Spacing
125 AVMOPEN := "[" Spacing
126 AVMCLOSE := "]" Spacing
127 DLOPEN := "<!" Spacing
128 DLCLOSE := "!>" Spacing
129 CLOPEN := "<" Spacing
130 CLCLOSE := ">" Spacing
131 ELLIPSIS := "..." Spacing
132 EOF := "" # end-of-file
TDL File Interpretation and Conventions
Layout of a type definition
Some parts of a type definition are mandated by TDL syntax, such as the initial identifier, the main operator, and the final dot:
identifier := (definition body) .
The definition body is just a conjunction of terms, maybe with documentation strings, and there is much valid variation in how those terms are arranged. Nevertheless, there are conventional locations for these terms depending on what kind of term they are. For instance, the supertypes are generally listed first, followed by an AVM:
head_only := unary_phrase & headed_phrase & [ HD-DTR #head & [ SYNSEM.LOCAL.CONJ cnil ], ARGS < #head > ].
If a documentation string is specified, the conventional place is before the AVM:
n_-_ad-pl_le := norm_np_adv_lexent & """ <description>N, can modify, locative (place) <ex>B lives overseas. <nex> <todo> """ [ SYNSEM.LOCAL [ CAT.HEAD [ MINORS.MIN place_n_rel, CASE obliq ], CONT.HOOK.INDEX.SORT place ] ].
Or if there is no AVM, before the final dot:
info-str := icons """Type for underspecified or "neutral" information structure.""".
Types versus instances
Specifying the text encoding
The text encoding of TDL files can be specified using a special comment on the first line of the file, as is done with many scripting languages. For instance, the following sets the encoding to UTF-8:
1 ; -*- coding: utf-8 -*-
In some TDL files, attributes specific to the Emacs text editor may be included:
1 ;;; -*- Mode: tdl; Coding: utf-8; indent-tabs-mode: nil; -*-
Feature interpretation of lists
The < ... > and <! ... !> shorthand for lists ("cons lists") and diff-lists, respectively, correspond to normal attribute-value pairs. The implementation relies on an encoding scheme where the first list item (the list's head) is at the feature FIRST while the rest of the list (the tail) is defined recursively under the feature REST (e.g., REST.REST.FIRST is the third element). The types associated with open and closed lists, and sometimes even the feature names, are configurable by the grammar.
entity |
example |
LKB config |
ACE config |
cons-list type |
*cons* |
(not configurable) |
cons-type |
open list type |
*list* |
*list-type* |
list-type |
closed list type |
*null* |
*empty-list-type* |
null-type |
diff-list type |
*diff-list* |
*diff-list-type* |
diff-list-type |
list head feature |
FIRST |
*list-head* |
(not configurable) |
list tail feature |
REST |
*list-tail* |
(not configurable) |
diff-list list feature |
LIST |
*diff-list-list* |
(not configurable) |
diff-list last feature |
LAST |
*diff-list-last* |
(not configurable) |
For the examples below, I use the values defined in the above table, which are taken from the ERG.
Cons Lists
Regular cons lists may be open (extendable) or closed (fixed-length). The type of an open list as interpreted by, e.g., < ... >, is *list* (rather, the defined open list type), but in hand-written TDL a subtype of *list* is often used, such as *cons*.
1 ; an empty list is terminated (always empty)
2 [ ATTR < > ] => [ ATTR *null* ]
3 ; single item goes on FIRST attribute and REST is terminated
4 [ ATTR < a > ] => [ ATTR *list* & [ FIRST a,
5 REST *null* ] ]
6 ; items after the first go on (REST.)+FIRST
7 [ ATTR < a, b > ] => [ ATTR *list* & [ FIRST a,
8 REST [ FIRST b,
9 REST *null* ] ] ]
10 ; an empty list with ... is not terminated
11 [ ATTR < ... > ] => [ ATTR *list* ]
12 ; this also works with items on the list
13 [ ATTR < a, ... > ] => [ ATTR *list* & [ FIRST a,
14 REST *list* ] ]
15 ; the . delimiter allows a non-*list*, non-*null* value for the last REST
16 [ ATTR < a . #coref > ] => [ ATTR *list* & [ FIRST a,
17 REST #coref ] ]
Diff Lists
Diff lists are regular lists under a LIST attribute, and LAST points to the last item. Diff lists don't support the unterminated-list functionality of cons lists, but they allow for appending lists of arbitrary size (see GeFaqDiffList).
Type documentation
TDL definitions allow documentation strings ("docstrings") before any term in the top-level conjunction or before the terminating dot (.) character:
n_-_c_le := n_intr_lex_entry """Intransitive count noun (icn) <ex>The dog barked. <nex>Much dog bark.""".
Before docstrings became well-supported, LTDB supported documentation in comments (normally preceding the documented type):
Case sensitivity
Case Sensitive
Things inside quotes (NB: strings passed from TFS world into MRS can be treated as case insensitive in MRS processing (i.e. as predicate symbols, but not CARGs)
Case Insensitive
- Everything in TDL not inside of quotes.
- Lexicon look-up.
- Proper names?
- Acronyms?
- .. approach these with token-mapping (preserve the info, and then downcase anyway)
Unknown
- Orthographic subrules (agree: case sensitive, ACE: [intended] case insensitive)
Notes: Arguments for case insensitive include shouting (call caps); Arguments for case sensitive include the use of upper case vowels in vowel harmony languages (linguistic representations, not orthography)
Notes for implementation
DocStrings
Multiple docstrings may be present on a single definition, but only the first one encountered on a definition is considered its primary docstring, and implementers are free to store or discard the other doc strings as they see fit. Docstrings on type-addenda should be concatenated with a newline to the previous docstring(s), or appended to a list of docstrings, associated with the type.
Comments
The syntax description above allows for comments anywhere that separating whitespace is allowed (not including those within strings, regular expressions, letter sets, etc.). This includes within a dotted attribute path (e.g., [ SYNSEM #| comment |# . #| comment |# LOCAL ... ]), although grammar developers may want to use this flexibility sparingly.
Open Questions
1. The ^ character is used to signal "expanded-syntax" in the LKB, but is this only used for regular expressions? Are there other expanded syntaxes? Do non-LKB processors support them? (see this thread on the 'developers' mailing list)
2. Are instances distinguishable from types? Are they (other other entities) restricted to having exactly one supertype?